54. 螺旋矩阵
This commit is contained in:
parent
44119f4286
commit
f29016175d
144
src/main.rs
144
src/main.rs
|
@ -1,106 +1,62 @@
|
|||
enum Operation {
|
||||
Add,
|
||||
Subtract,
|
||||
Multiply,
|
||||
Divide,
|
||||
}
|
||||
enum Card {
|
||||
Int(i32),
|
||||
Op(Operation),
|
||||
}
|
||||
struct Solution;
|
||||
impl Solution {
|
||||
fn solve(cards: &Vec<Card>) -> bool {
|
||||
let mut stack = Vec::new();
|
||||
for t in cards.iter() {
|
||||
if let Card::Op(op) = t {
|
||||
if stack.len() < 2 {
|
||||
return false;
|
||||
}
|
||||
let b = stack.pop().unwrap() as f64;
|
||||
let a = stack.pop().unwrap() as f64;
|
||||
let result = match op {
|
||||
Operation::Add => a + b,
|
||||
Operation::Subtract => a - b,
|
||||
Operation::Multiply => a * b,
|
||||
Operation::Divide => {
|
||||
if b == 0f64 {
|
||||
return false;
|
||||
}
|
||||
a / b
|
||||
}
|
||||
};
|
||||
stack.push(result);
|
||||
} else if let Card::Int(num) = t {
|
||||
stack.push(*num as f64);
|
||||
}
|
||||
}
|
||||
if stack.len() != 1 {
|
||||
return false;
|
||||
}
|
||||
(24f64 - stack[0]).abs() < 1e-5
|
||||
}
|
||||
fn dfs(cards: &Vec<i32>, card_objects: &mut Vec<Card>, visited: &mut Vec<bool>) -> bool {
|
||||
if card_objects.len() == 7 {
|
||||
return Self::solve(card_objects);
|
||||
}
|
||||
for i in 0..8 {
|
||||
if i <= 3 {
|
||||
if visited[i] {
|
||||
continue;
|
||||
}
|
||||
visited[i] = true;
|
||||
card_objects.push(Card::Int(cards[i]));
|
||||
if Self::dfs(cards, card_objects, visited) {
|
||||
return true;
|
||||
}
|
||||
card_objects.pop();
|
||||
visited[i] = false;
|
||||
}
|
||||
else {
|
||||
let op = match i {
|
||||
4 => Operation::Add,
|
||||
5 => Operation::Subtract,
|
||||
6 => Operation::Multiply,
|
||||
_ => Operation::Divide,
|
||||
};
|
||||
card_objects.push(Card::Op(op));
|
||||
if Self::dfs(cards, card_objects, visited) {
|
||||
return true;
|
||||
}
|
||||
card_objects.pop();
|
||||
}
|
||||
}
|
||||
false
|
||||
}
|
||||
pub fn spiral_order(matrix: Vec<Vec<i32>>) -> Vec<i32> {
|
||||
let mut top_x = 0;
|
||||
let mut left_y = 0;
|
||||
let mut bottom_x = matrix.len() as i32 - 1;
|
||||
let mut right_y = matrix[0].len() as i32 - 1;
|
||||
let mut next_x = 0;
|
||||
let mut next_y = 1;
|
||||
let mut pos = (0, 0);
|
||||
|
||||
pub fn judge_point24(cards: Vec<i32>) -> bool {
|
||||
let mut visited = vec![false; 4];
|
||||
let mut card_objects = Vec::new();
|
||||
for i in 0..4 {
|
||||
visited[i] = true;
|
||||
card_objects.push(Card::Int(cards[i]));
|
||||
for j in 0..4 {
|
||||
if visited[j] {
|
||||
continue;
|
||||
} else {
|
||||
visited[j] = true;
|
||||
card_objects.push(Card::Int(cards[j]));
|
||||
if Self::dfs(&cards, &mut card_objects, &mut visited) {
|
||||
return true;
|
||||
let mut res = vec![matrix[0][0]];
|
||||
|
||||
let mut next_pos = || {
|
||||
let mut new_pos = (pos.0 + next_x, pos.1 + next_y);
|
||||
if new_pos.0 > bottom_x || new_pos.0 < top_x || new_pos.1 > right_y || new_pos.1 < left_y {
|
||||
(next_x, next_y) = match (next_x, next_y) {
|
||||
(0, 1) => {
|
||||
top_x += 1;
|
||||
(1, 0)
|
||||
}
|
||||
card_objects.pop();
|
||||
visited[j] = false;
|
||||
(1, 0) => {
|
||||
right_y -= 1;
|
||||
(0, -1)
|
||||
}
|
||||
(0, -1) => {
|
||||
bottom_x -= 1;
|
||||
(-1, 0)
|
||||
}
|
||||
(-1, 0) => {
|
||||
left_y += 1;
|
||||
(0, 1)
|
||||
}
|
||||
_ => (0, 0),
|
||||
};
|
||||
|
||||
new_pos = (pos.0 + next_x, pos.1 + next_y);
|
||||
if new_pos.0 > bottom_x
|
||||
|| new_pos.0 < top_x
|
||||
|| new_pos.1 > right_y
|
||||
|| new_pos.1 < left_y
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
card_objects.pop();
|
||||
visited[i] = false;
|
||||
}
|
||||
false
|
||||
pos = new_pos;
|
||||
res.push(matrix[pos.0 as usize][pos.1 as usize]);
|
||||
true
|
||||
};
|
||||
while next_pos() {}
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let sl = Solution::judge_point24(vec![3,3,8,8]);
|
||||
let sl = Solution::spiral_order(vec![
|
||||
vec![1, 2, 3, 4],
|
||||
vec![5, 6, 7, 8],
|
||||
vec![9, 10, 11, 12],
|
||||
]);
|
||||
println!("{:?}", sl);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue